

RIVOLUZIONI INCONTRO CON VINCENZO BALZANI, IL PIÙ NOTO CHIMICO ITALIANO AL MONDO

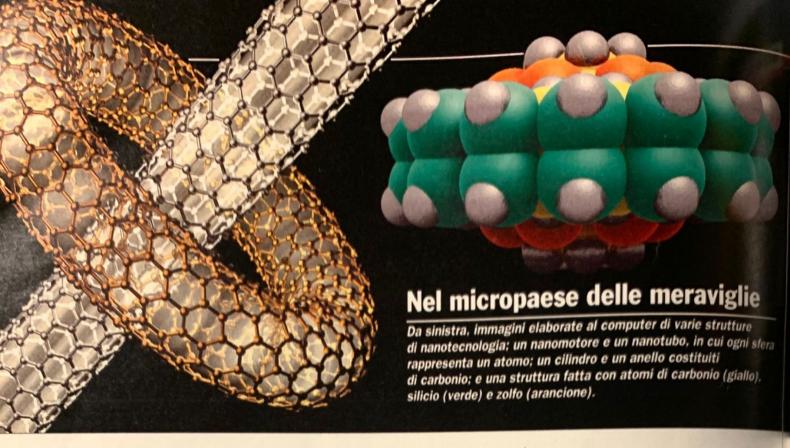
Le NANOtecnologie fanno le

Motori molecolari per computer miniaturizzati, antenne per imitare la clorofilla, sensori per combattere ogni forma di inquinamento. È il futuro, che è già iniziato.

di LUCA SCIORTINO

l grande progetto di un'ingegneria su scala nanometrica è già lanciato. Oggi possiamo manipolare la materia operando direttamente su atomi e molecole. Non è poco. Si profila all'orizzonte una rivoluzione che trasformerà radicalmente il mondo delle società industriali. Convincersene non è difficile. Basta guardare alle ultime scoperte e alle loro applicazioni future. Raccontate a Panorama da uno dei maggiori protagonisti al mondo di ricerche nel campo delle nanotecnologie, Vincenzo Balzani, professore di chimica all'Università di Bologna: «Lavoriamo su scale del miliardesimo di metro. Possiamo preparare componenti molecolari con speciali caratteristiche e assemblarli come vogliamo. La tecnica di miniaturizzazione "dall'alto", come la litografia in elettronica, sta cedendo il posto a quella "dal basso" delle nanotecnologie, dove singole molecole sono prese come mattoni per costruire i circuiti».

E così, se le dimensioni della lunghezza (centinaia di nanometri) della luce usata nella tecnica dall'alto costituivano un limite per la manipolazione della materia, con l'approccio dal basso il problema è superato. A lavorare con tecniche dall'alto erano più i fisici e gli ingegneri, adesso è il turno dei chimici, i quali possono sfruttare le loro conoscenze sulle proprietà delle


molecole per costruire sistemi nanometrici dalle caratteristiche volute.

Quello che si può fare è stupefacente: «Abbiamo pubblicato su Pnas (Proceedings of the National academy of sciences) una ricerca che riguarda un nanomotore formato da una molecola ad anello nella quale è infilata una molecola filiforme, alle cui estremità sono poi state poste altre due grosse molecole, per impedire all'anello di sfilarsi. Su quella fili-

forme ci sono due "stazioni" dove l'anello si può fermare. E con un input luminoso è possibile spostarlo da una stazione all'altra». Una tale scoperta può essere sfruttata in molti modi: «Potrebbe essere un componente di futuri computer ultraminiaturizzati, obbedendo a una logica binaria: "sì" quando l'anello è su una stazione, "no" quando è sull'altra. L'ulteriore aspetto molto interessante» ag-

IL BELLO DEL PICCOLO

Vincenzo Balzani insegna chimica all'Università di Bologna ed è candidato al premio Nobel.

cose in **GRANDE**

giunge Balzani «è che in questo congegno nanometrico la luce, anche solare, produce direttamente un movimento: l'energia luminosa viene quindi convertita in energia meccanica.

"Presto pubblicheremo i risultati di una seconda ricerca, compiuta insieme con un gruppo dell'Università della California: riguarda una prolunga molecolare che imita quelle macroscopiche. La "presa di corrente" è un complesso di rutenio, un metallo che quando è eccitato da un fotone emette un elettrone; il filo è costituito da una lunga molecola che da una parte ha una "spina" e dall'altra una "presa", alla

quale si può connettere un'altra "spina" molecolare».

Si cerca anche di imitare la natura, con l'obiettivo di giungere a una fotosintesi artificiale. «Stiamo costruendo antenne nanometriche capaci di assorbire e concentrare la luce, come accade nelle foglie. Il problema è creare reti di molecole in modo da riuscire ad assorbire la luce e convogliare l'energia in un punto dove avviene una separazione di cariche». Con le nanotecnologie si può fare molto altro ancora: «Costruire sensori in grado di rivelare la presenza di sostanze inquinanti, come mercurio nel mare o batteri negli alimenti, creare tessuti che non si bagnano, vetri autopu-

lenti e farmaci selettivi sulle cellule malate» conclude Balzani.

Quando questi progetti andranno in porto potremo combattere efficacemente l'inquinamento di aria e acqua, trovare nuove terapie, bloccare epidemie. La velocità del Web sarà circa 10 mila volte più rapida, il volume dei computer molto minore, le memorie diverranno stabili senza alimentazione elettrica e l'informazione sarà ubiquitaria. Imiteremo l'organizzazione della natura: la clorofilla, il sistema nervoso, i virus. Guarderemo alla cellula come a un contenitore di nanomacchine autoreplicanti.

Non è azzardato dire che molti problemi delle società industriali potrebbero essere risolti dalle nanotecnologie. Anche se, probabilmente, ne nasceranno altri. «Non solo e non tanto quelli di tossicità delle nanoparticelle inalate o ingerite negli impianti di produzione» dice Balzani «ma soprattutto il fatto che, con l'attuale modello di sviluppo, della nanotecnologia beneficieranno i paesi ricchi, creando più disequaglianze».

Le nostre libertà saranno forse minacciate da tecniche in grado di infrangere la privacy di chiunque, e la velocità di cambiamento metterà alla prova la capacità di riflettere e decider rapidamente. Tuttavia, come ha scrito il filosofo francese Jean-Pierre Dupuy, per l'uomo si presenta un'occasione unica: «Una riflessione in tempo reale sul progresso scientifico e tecnologico, e sarebbe la prima volta nella stari. «E

Ci vuole un forum

Una delle applicazioni delle nanotecnologie è in medicina: nanorobot intelligenti (nel disegno) in grado di viaggiare nei vasi sanguigni o di rilasciare farmaci. A questi temi è dedicato il Nanoforum 2006, il 27 e 28 settembre, al Politecnico di Milano, mostra-convegno sulle nuove frontiere dell'ultrapiccolo. Mentre dal 10 al 15 settembre si riuniscono a Firenze i maggiori chimici internazionali (tra cui Vincenzo Balzani): ci saranno 1.500

